Answer Keys

Part I

- 1. 490
- 2. 657.8
- 3.31
- 4. 289
- 5.6350
- 6.6868
- 7. 8
- 8. 111
- 9. 70
- 10.18
- 11. 15840 ft.
- 12. 148
- 13. 54
- $147\frac{2}{3}$

- 15. $\frac{55}{2}$.
- 16.76
- 17. 2000
- 18. 16,761
- 19. 9408
- 20. 117
- 21. $72\frac{3}{16}$
- 22.640
- 23.4
- 24. 147°.
- 25. $2\frac{9}{40}$
- 26. $x = \sqrt{15}$
- 27. $12\frac{1}{2}$.

- 28. 26_{10.}
- 29. 100π
- 30. 5
- 31. 180°.
- 32. $4\sqrt{3}$
- 33. 7.
- 34. 343.
- 35. $\frac{2}{3}$
- 36.88
- 37. 3
- 38. 42
- 39. 72°
- 40. 1/3.

80. 7.

Part II:

- 41. 162 (minutes)
- 42. 18.
- 43. 250 (students)
- 44. 8 (times)
- 45. 420.
- 46. 132
- 47. 25 (sq units)
- 48. 0.
- 49. 34 (units)
- 50. 1/24
- 51. -1.
- 52. 0.
- 53. 24.
- 54. 22
- 55. 9.
- 56. 300 (degrees)
- 57. 14 (blue marbles).
- 58. 3 (sq units)
- 59. 7.

- 60. 100 (minutes)
- 61. 18 minutes.
- 62. 143.
- 63. 56 (triangles)
- 64. 300 (dollars)
- 65. 210.
- 66. 20 (games)
- 67. 54.
- 68. 1
- 69. 25.
- 70. $5\frac{3}{5}$.
- 71. 13/8.
- 72. 4
- 73. 100
- 74. 2/9.
- 75. 132 (units)
- 76. 16 (years)
- 77. 2/15.
- 78. 76 (integers)
- 79. 13.

Solutions to Part II:

41. Solution: 162 (minutes).

Method 1:

It takes 120 minutes from 10:37 a.m. to 12:37 p.m. There are 79 - 37 = 42 minutes from 12:37 to 1:19. The answer is then 120 + 42 = 162 minutes.

Method 2:

It takes 180 minutes from 10:37 a.m. to 1:37 p.m . There are 37 - 19 = 18 minutes. The answer is then 1890 - 18 = 162 minutes.

42. Solution: 18.

$$3x + 3 = 3x + 8 - 5 = 23 - 5 = 18$$
.

43. Solution: 250.

We know that three out of every five students at Gauss Middle School went to the Spring Fling. So two out of every five students did not go. Let *x* be the total number of students.

$$\frac{2}{5} = \frac{100}{x}$$
 \Rightarrow $x = 250.$

44. Solution: 8.

Let V_1 be the original volume and V_2 be the new volume.

$$\frac{V_1}{V_2} = \left(\frac{a_1}{a_2}\right)^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$V_2 = 8 V_2.$$

45. Solution: 420.

$$101 + 103 + 107 + 109 = 420$$
.

46. Solution: 132.

The greatest value of x is 11. $11x + 11 = 11 \times 11 + 11 = 11 \times 12 = 132$.

47. Solution: 25.

The total area of the figure, in square units, is $\frac{5 \times 5}{2} \times 2 = 25$.

48. Solution: 0.

17 = 9 + 8. So one digit must be 9. The probability that none of the digits is 9 will be 0.

49. 34.

Method 1:

By Pythagorean Theorem, $a^2 + b^2 = c^2 \implies a^2 + 10^2 = 26^2 \implies a = \sqrt{26^2 - 10^2} = 24$. The sum of the legs is 10 + 24 = 34.

Method 2:

This is a 5n-12n-13n right triangle. n = 2. So the answer is 10 + 24 = 34.

50. Solution:
$$\frac{1}{24}$$
.

$$\frac{V_1}{V_2} = \frac{l \times w \times h}{3l \times 4w \times 2h} = \frac{1}{24}.$$

51. Solution: −1.

Multiplying *n* by both sides of n + (1/n) = 5: $n^2 + 1 = 5n$ \Rightarrow $n^2 - 5n = -1$.

52. Solution: 0.

By the middle point formula, $x = \frac{x_1 + x_2}{2} = \frac{-5 + 5}{2} = 0$.

We know that product is zero without calculating *y* coordinate.

53. Solution: 24.

$$a + b = 16$$
 (1)
 $b + c = 19$ (2)

$$a + c = 13 \tag{3}$$

$$(1) + (2) + (3)$$
: $2(a+b+c) = 48$ \Rightarrow $a+b+c = 24$.

54. Solution: 22.

$$17 + 17^2 = 17(1 + 17) = 17 \times 18 = 17 \times 2 \times 3 \times 3.$$

The sum of the distinct prime divisors is 17 + 2 + 3 = 22.

55. Solution: 9.**

 $3^{n} = 27^{3}$ can be written as $3^{n} = 3^{9}$. Thus n = 9.

56. Solution: 300°.

The smaller angle is 60° and the larger angle is $360^{\circ} - 60^{\circ} = 300^{\circ}$

57. Solution: 14.

$$P = \frac{3}{5} = \frac{\binom{21}{1}}{\binom{21+b}{1}} \qquad \Rightarrow \qquad \frac{3}{5} = \frac{21}{21+b} \qquad b = 14$$

58. Solution: 3.

The area of an equilateral triangle is: $A = \frac{\sqrt{3}}{4}a^2$. We know that $a = 2\sqrt[4]{3}$.

$$A = \frac{\sqrt{3}}{4} (2\sqrt[4]{3})^2 = 3.$$

59. Solution: 7.

The sum of the digits must be divisible by 9.

5 + K + 6 must be divisible by 9, or 2 + K must be divisible by 9. So K = 7.

60. Solution: 100 minutes.

James' rate is 1/10 and Evan's rate is 1/20.

Let t be the time they can finish the 15 walls when they work together, we have

$$(\frac{1}{10} + \frac{1}{20}) \times t = 15$$
 \Rightarrow $t = 100$ minutes.

61. Solution: 18 minutes.

Let *t* be the time it takes for them to meet.

$$\left(\frac{40}{60} + \frac{60}{60}\right) \times t = 30 \qquad \Rightarrow \qquad t = 18 \text{ minutes.}$$

62. Solution: 143.

Let two numbers be a and b.

$$GCF(a,b) \times LCM(a,b) = a \times b \implies 7 \times LCM(a,b) = 1001 \implies LCM(a,b) = 143.$$

63. Solution: 56.

We can form a triangle by connecting three points.

$$\binom{8}{3} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56.$$

64. Solution: \$300.

Let the original price be *x*.

$$50\% \times 50\% \times x = 75$$

$$\Rightarrow x = 300.$$

65. Solution: 210.

$$7 \times 17 + 91 = 210$$

66. Solution: 20.

$$2 \times \binom{5}{2} = 20.$$

67. Solution: 54.

$$6(3 \times 3) = 54.$$

68. Solution: 1.

$$b = 4, a = 3.$$

$$b-a=1$$
.

69. Solution: 25.

$$4x + y = 17$$

(1)

$$x + 4y = 8$$

$$(1) + (2)$$
: $5x + 5y = 25$.

(2)

$$(1) + (2): 5x + 5y = 2$$

70. Solution:
$$5\frac{3}{5}$$
.
 $(2+3+5+7+11)/5 = 28/5 = 5\frac{3}{5}$.

71. Solution: 13/8.

$$x_P = \frac{x_A + x_B}{2} = \frac{1.5 + 1.75}{2} = 1.625 = 13/8.$$

72. Solution: 4.

$$1 + 2 + \dots + 10 + 11 = \frac{(1+11)\times 11}{2} = 66$$
.

66 + 4 = 70 which is divisible by 7. So the answer is 4.

73. Solution: 100.

$$50 \times 1.5 = x \times 0.75$$

$$x = 100.$$

74. Solution: 2/9.

The sum of two numbers at most can be 12.

Prime numbers greater than 5 are 7 and 11.

$$7 = 6 + 1 = 1 + 6 = 5 + 2 = 2 + 5 = 4 + 3 = 3 + 4$$
.

$$11 = 6 + 5 = 5 + 6$$
.

The probability is 8/36 = 2/9.

75. Solution: 132.

Let the three sides be 11a, 11b, and 11c, with 11c the longest side. The perimeter is $(11a + 11b + 11c) = 11(a + b + c) = 11(3 + 4 + 5) = 11 \times 12 = 132$.

76. Solution: 16.

$$a+b+c+d+e+f=15\times 6$$

$$a+b+c+d+e=15\times 6-10=80$$
.

The answer is 80/5 = 16.

77. Solution: $\frac{2}{15}$.

$$\frac{5x}{2y} = \frac{5}{6}$$

$$\Rightarrow$$
 $3x = y$.

$$\frac{2x}{5y} = \frac{2x}{5 \times 3x} = \frac{2}{15}.$$

78. Solution: 76.

$$\left\lfloor \frac{1000}{13} \right\rfloor = 76.$$

79. Solution: 13.

$$221 = 13 \times 17$$
.

$$247 = 13 \times 19$$
.

The answer is 13.

80. Solution: 7.

$$\sqrt[3]{49} \times \sqrt[6]{49} = 49^{\frac{1}{3}} \times 49^{\frac{1}{6}} = 49^{\frac{1}{3} + \frac{1}{6}} = 49^{\frac{1}{2}} = 7.$$